
International Journal of Emerging Technologies in Engineering Research (IJETER)   

Volume 4, Issue 1, January (2016)                                                                         www.ijeter.everscience.org  

  

 

 

ISSN: 2454-6410                                              ©EverScience Publications       64 

    

Implementation of AES on FPGA Using Application-

Specific Instruction Processor 

P.Kokila 

Assistant Professor/ECE, Nandha Engineering College, Erode, Tamil Nadu, India. 

.T.G.Dhaarani 

Assistant Professor/ECE, Nandha Engineering College, Erode, Tamil Nadu, India. 

S.Nandhini 

Associate Professor/ECE, Nandha Engineering College, Erode, Tamil Nadu, India. 

P.Premkumar 

Assistant Professor/ECE, Nandha Engineering College, Erode, Tamil Nadu, India. 

Abstract – This paper presents two designs for the advanced 

encryption standard on field-programmable gate arrays (FPGAs) 

which occupies low area. The first design is an 8-bit application-

specific instruction processor, which supports key expansion 

(currently programmed for a 128-bit key), encipher and decipher. 

The design utilizes less than 60% of the resources of the smallest 

available Xilinx Spartan II FPGA (XC2S15). The average 

encipher-decipher throughput is 2.1 Mbps when clocked at 70 

MHz The design has numerous applications where low area and 

low power are priorities. The second design, using the Xilinx 

PicoBlaze soft core is included to provide an embedded 8-bit 

microcontroller comparison baseline. 

Index Terms – Advanced encryption standard (AES), 

Application-specific instruction processor (ASIP), field-

programmable gate array (FPGA). 

1. INTRODUCTION 

In January 1997, the National Institute of Standards and 

Technology (NIST) set out to establish a new standard of 

cryptographic algorithm to protect sensitive computer 

information and telecommunications systems in the Federal 

Government. The new algorithm would replace the aging Data 

Encryption Standard (DES) cipher algorithm, developed by 

IBM in the early 1970’s. As a FIPS standard, AES will 

officially be identified as an approved cipher algorithm that can 

be used by U.S. Government organizations to protect sensitive 

(unclassified) information. Those Government organizations 

will be able to use the other FIPS approved algorithms in 

addition to, or in lieu of, AES. 

The AES and its implementation for both application-specific 

instruction processor (ASIC) and field-programmable gate 

array (FPGA) technologies has been the subject of much 

research and continues to be a topic of interest in both academic 

and commercial environments. 

In recent years, there has been a trend towards using FPGA in 

the production versions of electronic systems. It is no longer 

true that FPGAs are only used for prototyping. Their inclusion 

in the final version, would at first appear more expensive, 

however the ability to update the design and reduced time to 

market are strong commercial drivers. This was furthered by 

the introduction by the FPGA manufacturers of effectively 

mask programmed standard-cell versions of their technologies. 

This has resulted in an increased demand on optimal FPGA 

designs. 

The main contribution of this paper is an ASIP capable of 

performing AES encipher and decipher operations using a 

truly8-bit datapath. The design avoids use of LUTs and 

proposes use of composite field data path for the SubBytes and   

InvSubBytes transformations. In addition, the MixColumns and 

all remaining operations are performed using a dedicated 8-bit 

Galois Field multiply-accumulate architecture. An iterative 

approach to multiplication was taken by implementing 

hardware support for finite-field doubling or finite-field 

multiplication by two (ffm2), halving and modulo-two addition. 

The ASIP achieves an average encipher-decipher throughput of 

2.1 Mbps and utilizes less than two thirds of the resources of 

the smallest Xilinx Spartan-II part (XC2S15). To complete the 

design space exploration, a second design is also presented in 

this paper which utilizes the PicoBlaze [10] complex state 

machine soft core processor to provide a comparative 8-bit 

embedded processor design. The ASIP is shown to offer a 

threefold speed advantage for a similar area. The structure of 

this paper is organized as Follows. Section II briefly describes 

the AES followed by a description of the design in Section III. 

Section IV details the ASIP hardware followed by, in Section 

V, the corresponding software. The Results for FPGA 

implementation are given in Section VI .The paper ends by 

drawing some conclusions in Section VII. 
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2. AES 

The AES has been fully documented in the freely available 

U.S. government publication FIPS-197 [12]. The standard 

comprises three block Ciphers, AES-128, AES-192 and AES-

256, adopted from a larger collection originally published as 

Rijndael. Each AES cipher has a 128-bit block size, with key 

sizes of 128, 192 and 256 bits, respectively. The 128-bit data 

block is divided into 16 bytes. These bytes are mapped to a 4x4 

array called the State, and all the internal operations of the AES 

algorithm are performed on the State. The structure of AES is 

shown in Fig. 1. Each of the component operations are 

described below together with their respective inverses 

required for decipherment. 

The ShiftRows operator is essentially a defined reordering of 

the bytes within the current state. The first row of the State does 

not change, while the second, third and fourth rows cyclically 

shift one byte, two bytes and three bytes to the left, 

respectively. The 128-bit data word,  applied to ShiftRows, R(x) 

, and InvShiftRows, R-1 (x) , may be considered as a 4-by-4 

matrix of 8-bit values. The byte order being ordered from  x00  

to x33 

128BIT 00 10 20 30 01 11 21x [ : , , , , , , ,RCx x x x x x x x
 

       31 02 12 22 32 03 13 23 33, , , , , , , , ]x x x x x x x x x                    (1) 

 

Fig. 1. Structure of AES 
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SubBytes S(x) performs sixteen GF(28) multiplicative inverse 

with irreducible polynomial P(w) = w8 + w8 + w8 + w +1,each 

inversion being followed by a specific affine transformation 

(Ax+B). The InvSubBytes operation S-1(x) can be similarly 

defined 

    
2 3 4

0 1 2 3 4x = x +x w+x w +x w +x w  

             
5 6 7

5 6 7+x w +x w +x w                                            (3) 

   
-1S(x) = A(x ) + B      

   
-1 -1S (x) = [A(x+B)]                                                        (4)    
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The MixColumns operator m(x) performs a set of fixed-value 

GF multiplications 

   m(x) = {03}x3 + {01}x2 + {01}x + {02} 

  m-1(x) = {0b}x3+ {0d}x2 + {09}x + {0e}.                         (5) 

This may be conveniently written in matrix form for each 

column to give the MixColumns M(x) and InvMixColumns M-

1(x) operations using GF multiplication modulo P(w) 

represented by the   symbol 

    0 1 2 3M(x)=[M (x)M (x)M (x)M (x)]  

    
-1 -1 -1 -1 -1

0 1 2 3M (x)=[M (x)M (x)M (x)M (x)]  
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where Mc
-1(x) = 
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The final operation AddRoundKey is simply the bitwise 

exclusive-or (XOR) of the current state and the RoundKey. The 

Key-Expansion utilizes four SubBytes operations followed by 

GF addition to yield the set of RoundKeys. Unfortunately, the 

order of use of the RoundKeys is reversed for the decipher data 

path thus it is necessary to compute the final RoundKey before 

deciphering data can proceed. The only method of doing this is 

to commence with the initial key and run through all the 

intermediate RoundKeys to reach the final (starting) value. The 

expansion operation also incorporates a byte-wise rotation and 

addition of a round specific constant, Rcon. These constants 

can be derived using ffm2. For 128-bit key, the ith RoundKey 

ki 
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i
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i
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defined by the following equation: 
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and 

      
1

1

i i i

j j jk k k

  ,    for j = 1,2,3.                                   (7)                     

3. ASIP DESIGN 

The first decision was to select an appropriate datapath width 

for the processor. As already described in the introduction, a 

number of the previous low-resource designs had opted for a 

32-bit datapath. Examination of the AES mathematics revealed 

the possibility of using an 8-bit datapath which had not been 

previously explored. Using less than 8 bits is believed to be 

impractical as the AES predominately uses 8-bit Galois Field 

arithmetic. 

The design of the ASIP was an iterative process. The design 

was conceptually split into three principal areas: the hardware, 

the instruction set and the application program. The definition 

of the instruction set effectively formed a design partition 

between the software and hardware aspects. A number of 

design iterations were followed. This is the classical hardware-

software co-design issue. 

From the initial stages of the design, three key issues were 

identified which contributed to most of the area. The first 

concerned the computation of SubBytes, for which existing 

implementations vary from look-up tables to computing the 

function mathematically. The second, was the definition of a 

suitable primitive operation (namely ffm-accumulate) to 

efficiently perform the Galois Field mathematics in the AES 

MixColumns, AddRoundKey, and KeyExpansion operations. 

The final issue was program ROM size reduction for which the 

two traditional techniques of iteration and subroutines were 

considered. These three issues are discussed in detail in the 

following sections. 

A. Low-Area Sub Bytes   

The most obvious method for implementing the SubBytes 

operation on FPGA was using a look-up table (LUT) based 

around a block memory (the “S-box”). The table for the 

forward and inverse transformation would require 512 bytes 

(4kbits). Given the dual port nature of Xilinx block memories 

this ROM could be used for two simultaneous operations. Here, 

an alternative, lower area, solution was required. A number of 

existing works [1]–[10] demonstrated how Sub-Bytes may be 

computed using Composite Field mathematics rather than a 

LUT. 

     For a composite field value T in GF((2n)2) 

T = tHx + tL where tHx  + tL ∈ GF(2n)                       (8) 

With a primitive polynomial  Pnm (x) 

𝑃nm(x) = x2+x+λ,   λ ∈ GF(2n)                              (9) 

Then letting
2 -1

H L L Hφ=(t λ+t (t +t ))
, we have the inverse 

        

-1

H L H

n

H L

T =t φx+(t +t )φ,

where t ,t ,λ,φ GF(2 )
                                 (10) 

The composite field multiplication AB of two values A and B 

H L H LA=A x+A  and B=B x+B                                     (11) 

may be represented in terms of subfield arithmetic as

 H H L H H LAB=x(A B +A B +A B )       

H H L L+λA B +A B ,                                                           (12) 

A further optimization can be made by describing this 

multiplication in Mastrovito form as  

L H L H L LAB=x(A +A )(B +B )+A B )                            (13) 
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             H H L L+λA B +A B . 

In order to perform an equivalent inversion in composite field 

arithmetic additional isomorphic transformations are required. 

These can be found using the method described in Paar [7]. The 

composite field theory was applied a number of times to 

construct a set of fields starting with the base field and building 

up successively to reach. Each stage has its own primitive 

trinomial and binary value format. Table I summarizes the field 

construction.  

The objective was to perform the multiplicative inverse of the 

supplied value in GF(((22)2)2) over a number of cycles sharing 

the composite field multiplier. Here, the input byte is split into 

two 4-bit nibbles V=Az + B. The inversion is then given by the 

following equation: 

                

-1

2 -1

V =Aφz+(A+B)φ

where φ=(A λ+B(A+B))
                          

(14)        

TABLE I 

COMPOSITE FILD ARITHMETIC 

 
 

 

Fig.2. Block diagram of multiplicative inverse in 

GF(((2)2)2)2). 

The computational path of SubBytes was relatively long and 

this would dominate the cycle time of the entire processor. As 

the SubBytes operation was not the dominant operation in terms 

of quantity (as a fraction of the total instructions needed to 

perform the AES) this would have unduly limited the 

performance. Thus, SubBytes was split further into a total of 

five cycles to remove it from the critical path (Fig. 3). 

 

Fig.3. Block diagram of new subbytes circuit 

This approach reduced the total forward and inverse SubBytes 

circuit to 42 slices on an XC2S15, a reduction in size of 27% 

compared to the original high-throughput version [9]. 

B. 8-BitffmAccumulate 

The AES MixColumns operator is fundamentally a 32-bit and 

there have been a number of designs [5][6] based around a 32-

bit datapath. Only one design [9], for ASIC, was found which 

reported using an 8-bit datapath. However, the design married 

a 32-bit MixColumns to the 8-bit datapath by successively 

loading three 8-bit input registers in sequence to form the 

required 32-bit word with a similar process at the output. Here, 

a truly 8-bit alternative is sought with the corresponding area 

saving.  

Examining the AES algorithm, a set of primitive operations 

were determined which cover the remaining operations of 

ShiftRows, mixColumns, and KeyExpansion. These were found 

to be ffm2 and XOR. For this design, the decipher function was 

also required and as it is undesirable to store the entire set of 

RoundKeys, a further operation of finite-field halving or finite-

field division by two (ffd2) was needed for reverse 

KeyExpansion. The ShiftRows operator was implemented as a 

set of 8-bit data moves between memory locations. Hardware 

implementation of the ffm2 and halving is described by the 

following equations: 

7 0 6 5 4 3 7 1 0 7 72( ) [ , , , , , , ]ffm d d d d d d d d d d     

7 0 0 7 6 5 4 0 3 0 2 1 02( ) [ , , , , , , , ]ffd d d d d d d d d d d d d      

                                                                      (15) 

 

There are numerous examples in the MixColumns and Key-

Expansion calculations where the result of an 8-bit operation 

was further acted upon. This was either in terms of repeated 

finite-field addition or repeated ffm2s. Thus, the inclusion in 

the datapath of an accumulator reduced the demands placed on 

the data memory. These requirements led to the development 

of a multiply-accumulate architecture capable of supporting 

moving 8-bit data 8-bit finite-field addition (XOR) and 

multiplication and division by two in GF(28). An execution unit 

specific to this type of operation was developed and its circuit 

is presented in Fig. 4. 

 

Fig. 4. Circuit diagram for “multiply-accumulate” functions. 
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C. Program ROM Size Reduction 

One of the critical design decisions was which looping 

constructs, if any, were to be supported. A very simple 

processor could be constructed which only permitted execution 

of linear code. However, once the cost of the large program 

ROM size was balanced against the area and performance 

penalties for implementing even the most limited forms of 

iteration then linear code was no longer a viable option. The 

standard techniques for reducing the size of a program are 

iteration and subroutines. However, both techniques require 

specialist support from the processor hardware thus their 

inclusion would increase the area cost and complexity of the 

processor. 

The final ASIP hardware provided support for one level of 

subroutines and two levels of iteration with one of the loop 

counters being used to conditionally provide indexed 

addressing. This enabled programming of the entire AES 

cipher process using only a few hundred instructions from an 

instruction set consisting of only 15 instructions. 

4. ASIP HARDWARE 

TABLE II  

PROCESSOR INSTRUCTION SET 

 

The traditional microcontroller architecture was adopted with 

separate program and data memories (i.e., Harvard 

Architecture).Two levels of looping were supported using two 

dedicated four bit counters X and Y. The loading of these was 

performed using the LDLOOP instruction and a single 

instruction DJNZ decreases a specified counter and performs a 

conditional jump if the value was nonzero. It was decided that 

a single four bit index, conditionally applied to source and 

destination RAM addresses, and associated with a loop counter 

(Y) was optimal. This addressing was enabled by the X flag 

and only operates on the lower 32 addresses (i.e., those 

associated with key and data and not the temporary storage). 

The value of the index was added modulo 16 or if the R flag 

was set, negated prior to the addition. The use of a single level 

of subroutines was supported using a dedicated return address 

register associated with the program counter. The JSR 

instruction calls a subroutine and the RETN instruction 

resumes execution at the instruction immediately after the 

previous JSR. 

The complete instruction set for the processor is summarized 

in Table II. Fig. 5 shows the architecture of the processor. It 

should be noted that due to the clocking requirement of block 

memories, instructions take multiple cycles. 

 

Fig. 5. ASIP Architecture 

5. ASIP SOFTWARE 

A. Forward Key Expansion 

The key expansion, defined in the AES specification, can 

expressed as a set of operations which are performed each 

round to generate the next RoundKey. 

 

Fig. 6. Forward Key Expansion. 

B. Reverse Key Expansion 

Reverse key expansion was approached using a similar method 

to the forward key expansion. However, the process starts with 

(
' ' ' '3 , 7 , 11, 15k k k k ) and works backwards to finally yield (

' ' ' '0 , 4 , 8 , 12k k k k  ). This time (Fig. 7), the Rcon value was 

propagated in the reverse direction using ffd2. 
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Fig. 7. Reverse Key Expansion 

6. FPGA IMPLEMENTATION RESULTS 

Fig. 8 shows that the placement of this design fits comfortably 

into the smallest Spartan-II device (XC2S15) occupying about 

60% of the resources. The design required 145 slices 

(depending on user constraints) and two block memories. The 

block memory used as the register file was only partially 

utilized (360 bits) which gives rise to an alternative 

implementation using distributed memory with a cost of 42 

additional slices and saving one of the block memories. No 

comparable 8-bit FPGA designs were found so comparison was 

made against the best 32-bit designs. Additionally, a second 

design was developed using the freely available Xilinx 

PicoBlaze core. This was done to provide a small embedded 

software baseline for comparison in terms of throughput and 

area. A concession was made in terms of implementing 

SubBytes as a ROM based lookup table. 

 

Fig. 8. Placement on XC2S15 FPGA 

TABLE III 

IMPLEMENTATION RESULTS 

Design & FPGA 

(device) 

ASIP(Spartan II 

XC2S15) 

Picoblaze 

Spartan II 

(XC2S15) 

Max.Clock 

Freq.(Mhz) 

73 90 

Datapath Bits 8 8 

Slices 145 127 

No.of BRAMS 

used 

2 2 

BRAM Size 4 4 

Bits of BRAM 

used 

4,580 10,676 

Eqiv. slices for 

memory 

140 333 

Total Eqiv. Slices 250 451 

Ave. 

Throughput(Mbps) 

2.175 0.80 

Performance, Typ. 

Throughput per 

slice 

8.3 1.5 

7. CONCLUSION 

Both the ASIP and PicoBlaze based designs are the smallest 

known FPGA implementations to date. Such designs have 

application across a wide range of areas especially those 

needing a short time to market and relatively low power. 
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