
International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 64

Implementation of AES on FPGA Using Application-

Specific Instruction Processor

P.Kokila

Assistant Professor/ECE, Nandha Engineering College, Erode, Tamil Nadu, India.

.T.G.Dhaarani

Assistant Professor/ECE, Nandha Engineering College, Erode, Tamil Nadu, India.

S.Nandhini

Associate Professor/ECE, Nandha Engineering College, Erode, Tamil Nadu, India.

P.Premkumar

Assistant Professor/ECE, Nandha Engineering College, Erode, Tamil Nadu, India.

Abstract – This paper presents two designs for the advanced

encryption standard on field-programmable gate arrays (FPGAs)

which occupies low area. The first design is an 8-bit application-

specific instruction processor, which supports key expansion

(currently programmed for a 128-bit key), encipher and decipher.

The design utilizes less than 60% of the resources of the smallest

available Xilinx Spartan II FPGA (XC2S15). The average

encipher-decipher throughput is 2.1 Mbps when clocked at 70

MHz The design has numerous applications where low area and

low power are priorities. The second design, using the Xilinx

PicoBlaze soft core is included to provide an embedded 8-bit

microcontroller comparison baseline.

Index Terms – Advanced encryption standard (AES),

Application-specific instruction processor (ASIP), field-

programmable gate array (FPGA).

1. INTRODUCTION

In January 1997, the National Institute of Standards and

Technology (NIST) set out to establish a new standard of

cryptographic algorithm to protect sensitive computer

information and telecommunications systems in the Federal

Government. The new algorithm would replace the aging Data

Encryption Standard (DES) cipher algorithm, developed by

IBM in the early 1970’s. As a FIPS standard, AES will

officially be identified as an approved cipher algorithm that can

be used by U.S. Government organizations to protect sensitive

(unclassified) information. Those Government organizations

will be able to use the other FIPS approved algorithms in

addition to, or in lieu of, AES.

The AES and its implementation for both application-specific

instruction processor (ASIC) and field-programmable gate

array (FPGA) technologies has been the subject of much

research and continues to be a topic of interest in both academic

and commercial environments.

In recent years, there has been a trend towards using FPGA in

the production versions of electronic systems. It is no longer

true that FPGAs are only used for prototyping. Their inclusion

in the final version, would at first appear more expensive,

however the ability to update the design and reduced time to

market are strong commercial drivers. This was furthered by

the introduction by the FPGA manufacturers of effectively

mask programmed standard-cell versions of their technologies.

This has resulted in an increased demand on optimal FPGA

designs.

The main contribution of this paper is an ASIP capable of

performing AES encipher and decipher operations using a

truly8-bit datapath. The design avoids use of LUTs and

proposes use of composite field data path for the SubBytes and

InvSubBytes transformations. In addition, the MixColumns and

all remaining operations are performed using a dedicated 8-bit

Galois Field multiply-accumulate architecture. An iterative

approach to multiplication was taken by implementing

hardware support for finite-field doubling or finite-field

multiplication by two (ffm2), halving and modulo-two addition.

The ASIP achieves an average encipher-decipher throughput of

2.1 Mbps and utilizes less than two thirds of the resources of

the smallest Xilinx Spartan-II part (XC2S15). To complete the

design space exploration, a second design is also presented in

this paper which utilizes the PicoBlaze [10] complex state

machine soft core processor to provide a comparative 8-bit

embedded processor design. The ASIP is shown to offer a

threefold speed advantage for a similar area. The structure of

this paper is organized as Follows. Section II briefly describes

the AES followed by a description of the design in Section III.

Section IV details the ASIP hardware followed by, in Section

V, the corresponding software. The Results for FPGA

implementation are given in Section VI .The paper ends by

drawing some conclusions in Section VII.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 65

2. AES

The AES has been fully documented in the freely available

U.S. government publication FIPS-197 [12]. The standard

comprises three block Ciphers, AES-128, AES-192 and AES-

256, adopted from a larger collection originally published as

Rijndael. Each AES cipher has a 128-bit block size, with key

sizes of 128, 192 and 256 bits, respectively. The 128-bit data

block is divided into 16 bytes. These bytes are mapped to a 4x4

array called the State, and all the internal operations of the AES

algorithm are performed on the State. The structure of AES is

shown in Fig. 1. Each of the component operations are

described below together with their respective inverses

required for decipherment.

The ShiftRows operator is essentially a defined reordering of

the bytes within the current state. The first row of the State does

not change, while the second, third and fourth rows cyclically

shift one byte, two bytes and three bytes to the left,

respectively. The 128-bit data word, applied to ShiftRows, R(x)

, and InvShiftRows, R-1 (x) , may be considered as a 4-by-4

matrix of 8-bit values. The byte order being ordered from x00

to x33

128BIT 00 10 20 30 01 11 21x [: , , , , , , ,RCx x x x x x x x

 31 02 12 22 32 03 13 23 33, , , , , , , ,]x x x x x x x x x (1)

Fig. 1. Structure of AES

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

x x x x

x x x x
x=

x x x x

x x x x

 
 
 
 
 
 

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

x x x x

x x x x
R(x)=

x x x x

x x x x

 
 
 
 
 
 

00 01 02 03

10 11 12 13-1

20 21 22 23

30 31 32 33

x x x x

x x x x
R (x)=

x x x x

x x x x

 
 
 
 
 
 

 (2)

SubBytes S(x) performs sixteen GF(28) multiplicative inverse

with irreducible polynomial P(w) = w8 + w8 + w8 + w +1,each

inversion being followed by a specific affine transformation

(Ax+B). The InvSubBytes operation S-1(x) can be similarly

defined

2 3 4

0 1 2 3 4x = x +x w+x w +x w +x w

5 6 7

5 6 7+x w +x w +x w (3)

-1S(x) = A(x) + B

-1 -1S (x) = [A(x+B)] (4)

Where,

0

7

10001111

11000111

11100011

11110001

11111000

01111100

00111110

00011111
w

A w

 
 
 
 
 
 
 
 
 
 
 
  

0

7

1

1

0

0

0

1

1

0

w

w

B

 
 
 
 
 
 
 
 
 
 
 
  

The MixColumns operator m(x) performs a set of fixed-value

GF multiplications

 m(x) = {03}x3 + {01}x2 + {01}x + {02}

 m-1(x) = {0b}x3+ {0d}x2 + {09}x + {0e}. (5)

This may be conveniently written in matrix form for each

column to give the MixColumns M(x) and InvMixColumns M-

1(x) operations using GF multiplication modulo P(w)

represented by the  symbol

 0 1 2 3M(x)=[M (x)M (x)M (x)M (x)]

-1 -1 -1 -1 -1

0 1 2 3M (x)=[M (x)M (x)M (x)M (x)]

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 66

where Mc
-1(x) =

02 03 02 01

01 02 03 01

01 01 02 03

03 01 01 02

 
 
  
 
 
 

0c

1c

2c

3c

x

x

x

x

 
 
 
 
 
 

 and Mc
-1(x) =

0e 0b 0d 09

09 0e 0b 0d

0d 09 0e 0b

0b 0d 09 0e

 
 
  
 
 
 

0c

1c

2c

3c

x

x

x

x

 
 
 
 
 
 

 (6)

The final operation AddRoundKey is simply the bitwise

exclusive-or (XOR) of the current state and the RoundKey. The

Key-Expansion utilizes four SubBytes operations followed by

GF addition to yield the set of RoundKeys. Unfortunately, the

order of use of the RoundKeys is reversed for the decipher data

path thus it is necessary to compute the final RoundKey before

deciphering data can proceed. The only method of doing this is

to commence with the initial key and run through all the

intermediate RoundKeys to reach the final (starting) value. The

expansion operation also incorporates a byte-wise rotation and

addition of a round specific constant, Rcon. These constants

can be derived using ffm2. For 128-bit key, the ith RoundKey

ki

 is composed of

i

Ck columns of byte values
i

C,Rk and is

defined by the following equation:

1 1

0,3 3,0

1 1

0,0 3,1i

0 1 1

0,1 3,2

1 1

0,2 3,3

() (01)

()
k

()

()

i i i

i i

i i

i i

s k f k

s k k

s k k

s k k

 

 

 

 

  
 

 
  

 
 

 

and

1

1

i i i

j j jk k k

  , for j = 1,2,3. (7)

3. ASIP DESIGN

The first decision was to select an appropriate datapath width

for the processor. As already described in the introduction, a

number of the previous low-resource designs had opted for a

32-bit datapath. Examination of the AES mathematics revealed

the possibility of using an 8-bit datapath which had not been

previously explored. Using less than 8 bits is believed to be

impractical as the AES predominately uses 8-bit Galois Field

arithmetic.

The design of the ASIP was an iterative process. The design

was conceptually split into three principal areas: the hardware,

the instruction set and the application program. The definition

of the instruction set effectively formed a design partition

between the software and hardware aspects. A number of

design iterations were followed. This is the classical hardware-

software co-design issue.

From the initial stages of the design, three key issues were

identified which contributed to most of the area. The first

concerned the computation of SubBytes, for which existing

implementations vary from look-up tables to computing the

function mathematically. The second, was the definition of a

suitable primitive operation (namely ffm-accumulate) to

efficiently perform the Galois Field mathematics in the AES

MixColumns, AddRoundKey, and KeyExpansion operations.

The final issue was program ROM size reduction for which the

two traditional techniques of iteration and subroutines were

considered. These three issues are discussed in detail in the

following sections.

A. Low-Area Sub Bytes

The most obvious method for implementing the SubBytes

operation on FPGA was using a look-up table (LUT) based

around a block memory (the “S-box”). The table for the

forward and inverse transformation would require 512 bytes

(4kbits). Given the dual port nature of Xilinx block memories

this ROM could be used for two simultaneous operations. Here,

an alternative, lower area, solution was required. A number of

existing works [1]–[10] demonstrated how Sub-Bytes may be

computed using Composite Field mathematics rather than a

LUT.

 For a composite field value T in GF((2n)2)

T = tHx + tL where tHx + tL ∈ GF(2n) (8)

With a primitive polynomial Pnm (x)

𝑃nm(x) = x2+x+λ, λ ∈ GF(2n) (9)

Then letting
2 -1

H L L Hφ=(t λ+t (t +t))
, we have the inverse

-1

H L H

n

H L

T =t φx+(t +t)φ,

where t ,t ,λ,φ GF(2)
 (10)

The composite field multiplication AB of two values A and B

H L H LA=A x+A and B=B x+B (11)

may be represented in terms of subfield arithmetic as

 H H L H H LAB=x(A B +A B +A B)

H H L L+λA B +A B , (12)

A further optimization can be made by describing this

multiplication in Mastrovito form as

L H L H L LAB=x(A +A)(B +B)+A B) (13)

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 67

 H H L L+λA B +A B .

In order to perform an equivalent inversion in composite field

arithmetic additional isomorphic transformations are required.

These can be found using the method described in Paar [7]. The

composite field theory was applied a number of times to

construct a set of fields starting with the base field and building

up successively to reach. Each stage has its own primitive

trinomial and binary value format. Table I summarizes the field

construction.

The objective was to perform the multiplicative inverse of the

supplied value in GF(((22)2)2) over a number of cycles sharing

the composite field multiplier. Here, the input byte is split into

two 4-bit nibbles V=Az + B. The inversion is then given by the

following equation:

-1

2 -1

V =Aφz+(A+B)φ

where φ=(A λ+B(A+B))

(14)

TABLE I

COMPOSITE FILD ARITHMETIC

Fig.2. Block diagram of multiplicative inverse in

GF(((2)2)2)2).

The computational path of SubBytes was relatively long and

this would dominate the cycle time of the entire processor. As

the SubBytes operation was not the dominant operation in terms

of quantity (as a fraction of the total instructions needed to

perform the AES) this would have unduly limited the

performance. Thus, SubBytes was split further into a total of

five cycles to remove it from the critical path (Fig. 3).

Fig.3. Block diagram of new subbytes circuit

This approach reduced the total forward and inverse SubBytes

circuit to 42 slices on an XC2S15, a reduction in size of 27%

compared to the original high-throughput version [9].

B. 8-BitffmAccumulate

The AES MixColumns operator is fundamentally a 32-bit and

there have been a number of designs [5][6] based around a 32-

bit datapath. Only one design [9], for ASIC, was found which

reported using an 8-bit datapath. However, the design married

a 32-bit MixColumns to the 8-bit datapath by successively

loading three 8-bit input registers in sequence to form the

required 32-bit word with a similar process at the output. Here,

a truly 8-bit alternative is sought with the corresponding area

saving.

Examining the AES algorithm, a set of primitive operations

were determined which cover the remaining operations of

ShiftRows, mixColumns, and KeyExpansion. These were found

to be ffm2 and XOR. For this design, the decipher function was

also required and as it is undesirable to store the entire set of

RoundKeys, a further operation of finite-field halving or finite-

field division by two (ffd2) was needed for reverse

KeyExpansion. The ShiftRows operator was implemented as a

set of 8-bit data moves between memory locations. Hardware

implementation of the ffm2 and halving is described by the

following equations:

7 0 6 5 4 3 7 1 0 7 72() [, , , , , ,]ffm d d d d d d d d d d   

7 0 0 7 6 5 4 0 3 0 2 1 02() [, , , , , , ,]ffd d d d d d d d d d d d d    

 (15)

There are numerous examples in the MixColumns and Key-

Expansion calculations where the result of an 8-bit operation

was further acted upon. This was either in terms of repeated

finite-field addition or repeated ffm2s. Thus, the inclusion in

the datapath of an accumulator reduced the demands placed on

the data memory. These requirements led to the development

of a multiply-accumulate architecture capable of supporting

moving 8-bit data 8-bit finite-field addition (XOR) and

multiplication and division by two in GF(28). An execution unit

specific to this type of operation was developed and its circuit

is presented in Fig. 4.

Fig. 4. Circuit diagram for “multiply-accumulate” functions.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 68

C. Program ROM Size Reduction

One of the critical design decisions was which looping

constructs, if any, were to be supported. A very simple

processor could be constructed which only permitted execution

of linear code. However, once the cost of the large program

ROM size was balanced against the area and performance

penalties for implementing even the most limited forms of

iteration then linear code was no longer a viable option. The

standard techniques for reducing the size of a program are

iteration and subroutines. However, both techniques require

specialist support from the processor hardware thus their

inclusion would increase the area cost and complexity of the

processor.

The final ASIP hardware provided support for one level of

subroutines and two levels of iteration with one of the loop

counters being used to conditionally provide indexed

addressing. This enabled programming of the entire AES

cipher process using only a few hundred instructions from an

instruction set consisting of only 15 instructions.

4. ASIP HARDWARE

TABLE II

PROCESSOR INSTRUCTION SET

The traditional microcontroller architecture was adopted with

separate program and data memories (i.e., Harvard

Architecture).Two levels of looping were supported using two

dedicated four bit counters X and Y. The loading of these was

performed using the LDLOOP instruction and a single

instruction DJNZ decreases a specified counter and performs a

conditional jump if the value was nonzero. It was decided that

a single four bit index, conditionally applied to source and

destination RAM addresses, and associated with a loop counter

(Y) was optimal. This addressing was enabled by the X flag

and only operates on the lower 32 addresses (i.e., those

associated with key and data and not the temporary storage).

The value of the index was added modulo 16 or if the R flag

was set, negated prior to the addition. The use of a single level

of subroutines was supported using a dedicated return address

register associated with the program counter. The JSR

instruction calls a subroutine and the RETN instruction

resumes execution at the instruction immediately after the

previous JSR.

The complete instruction set for the processor is summarized

in Table II. Fig. 5 shows the architecture of the processor. It

should be noted that due to the clocking requirement of block

memories, instructions take multiple cycles.

Fig. 5. ASIP Architecture

5. ASIP SOFTWARE

A. Forward Key Expansion

The key expansion, defined in the AES specification, can

expressed as a set of operations which are performed each

round to generate the next RoundKey.

Fig. 6. Forward Key Expansion.

B. Reverse Key Expansion

Reverse key expansion was approached using a similar method

to the forward key expansion. However, the process starts with

(
' ' ' '3 , 7 , 11, 15k k k k) and works backwards to finally yield (

' ' ' '0 , 4 , 8 , 12k k k k). This time (Fig. 7), the Rcon value was

propagated in the reverse direction using ffd2.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 69

Fig. 7. Reverse Key Expansion

6. FPGA IMPLEMENTATION RESULTS

Fig. 8 shows that the placement of this design fits comfortably

into the smallest Spartan-II device (XC2S15) occupying about

60% of the resources. The design required 145 slices

(depending on user constraints) and two block memories. The

block memory used as the register file was only partially

utilized (360 bits) which gives rise to an alternative

implementation using distributed memory with a cost of 42

additional slices and saving one of the block memories. No

comparable 8-bit FPGA designs were found so comparison was

made against the best 32-bit designs. Additionally, a second

design was developed using the freely available Xilinx

PicoBlaze core. This was done to provide a small embedded

software baseline for comparison in terms of throughput and

area. A concession was made in terms of implementing

SubBytes as a ROM based lookup table.

Fig. 8. Placement on XC2S15 FPGA

TABLE III

IMPLEMENTATION RESULTS

Design & FPGA

(device)

ASIP(Spartan II

XC2S15)

Picoblaze

Spartan II

(XC2S15)

Max.Clock

Freq.(Mhz)

73 90

Datapath Bits 8 8

Slices 145 127

No.of BRAMS

used

2 2

BRAM Size 4 4

Bits of BRAM

used

4,580 10,676

Eqiv. slices for

memory

140 333

Total Eqiv. Slices 250 451

Ave.

Throughput(Mbps)

2.175 0.80

Performance, Typ.

Throughput per

slice

8.3 1.5

7. CONCLUSION

Both the ASIP and PicoBlaze based designs are the smallest

known FPGA implementations to date. Such designs have

application across a wide range of areas especially those

needing a short time to market and relatively low power.

REFERENCES

[1] X. Zhang and K. K. Parhi, “High-speed VLSI architectures for the AES

algorithm,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12,

no. 9, pp. 957–967, Sep. 2004.

[2] A. Hodjat and I. Verbauwhede, “A 21.54 Gbits/s Fully Pipelined AES

Processor on FPGA,” in Proc. FCCM’04, Apr. 2004, pp. 308–309.

[3] J. Zambreno, D. Nguyen, and A. Choudhary, “Exploring Area/Delay

Trade-Offs in an AES FPGA Implementation,” in Proc. LNCS FPL’04,

Antwerp, Belgium, 2004, vol.3203,pp.575-585.

[4] P. Chodowiec and Gaj, “Very Compact FPGA Implementation of the

AES Algorithm,” in Proc. LNCS’03,2003,vol.2779,pp.319-333.

[5] G. Rouvroy F. X. Standaert, J. J. Quisquater, and J. D.Legat,“ Compact

and efficient encryption/decryption module for FPGA implementation of

the AES Rijndael very well suited for small embedded applications,” in

Proc. ITCC’04, Apr. 2004, vol. 2, pp. 583–587.

[6] V. Fischer and M. Drutarovsky, “Two Methods of Rijndael

Implementation in in Reconfigurable Hardware,” in Proc. CHES’01,

2001, vol. 2162, pp. 77–92.

[7] F. X. Standaert, G. Rouvroy, J. Quisquater, and J. Legat, “A

Methodology to Implement Block Ciphers in Reconfigurable Hardware

and its Application to Fast and Compact AES RIJNDAEL,” in Proc.

ACMFPGA’03, Monterey, CA, 2003, pp. 216–224.

[8] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong Authention

for RFID Systems Using the AES Algorithm,” in Proc. LNCSCHES’04,

2004, pp. 357–370.

[9] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A Compact Rijndael

Hardware ArchitectureWith S-Box Optimization,” in Proc.

LNCSASIACRYPT’01, Dec. 2001, vol. 2248, pp. 239–254.

